Teacher Details

Hanagal David Devaprasad

Department of Statistics

david@unipune.ac.in

Research Areas : Reliability Theory, Survival Analysis, Bayesian Inference, Statistical Modeling, Frailty Models


Google Scholar Profile | ResearchGate Profile

1)    Hanagal, D.D. (2021). Positive Stable Shared Frailty Models Based on Additive Hazards. Statistics in Biosciences, 1-23. ISSN(print/online): 1867-1764/1867-1772, URL/DOI: http://dx.doi.org/10.1007/s12561-020-09299-8
2)    Hanagal, D.D., Pandey, A. (2020). Correlated inverse Gaussian frailty models for bivariate survival data. Communications in Statistics-Theory and Methods, 49 (4), 845-863. ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2018.1549256
3)    Hanagal, D. (2020). Correlated positive stable frailty models. Communications in Statistics-Theory and Methods, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2020.1736305
4)    Hanagal, D.D. (2020). Analysis of Kidney infection Data Using Correlated Inverse Gaussian Frailty Model. Statistics and Applications, 18 (1), 1-19. ISSN(print/online): 2452-7395, URL/DOI: https://www.ssca.org.in/media/1_vol._18_No._1_2020_SA_Hanagal.pdf
5)    Hanagal, D.D., Pandey, A. (2017). Shared Frailty Models Based on Reversed Hazard Rate for Modified Inverse Weibull Distribution as Baseline Distribution. Communications in Statistics-Theory and Methods, 46 (1), 234-246. Google Scholar Citations: 1, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2014.990102
6)    Hanagal, D.D., Pandey, A. (2017). Shared Inverse Gaussian Frailty Models Based on Additive Hazards. Communications in Statistics-Theory and Methods, 46 (22), 11143-11162. Google Scholar Citations: 2, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2016.1260740
7)    Hanagal, D.D., Bhambure, S.M. (2017). Shared Gamma Frailty Models Based on Reversed Hazard Rate for Modeling Australian Twin Data. Communications in Statistics-Theory and Methods, 46 (12), 5812-5826. Google Scholar Citations: 2, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2015.1116581
8)    Hanagal, D.D., Kamble, A.T. (2016). Bayesian estimation in shared positive stable frailty models. Journal of Data Science, 14 (4), 615-639. ISSN(print/online): 1680-743X/1683-8602, URL/DOI: http://www.jdsruc.org/upload/7%282013-01-01133006%29.pdf
9)    Hanagal, D.D., Bhalerao, N.N. (2016). Analysis of NHPP software relibility growth models. International Journal of Statistics and Reliability Engineering, 3 (2), 53-67. ISSN(print/online): 2350-0174.
10)    Hanagal, D.D., Bhalerao, N.N. (2016). Modeling and statistical inference on generalized inverse Weibull software reliability model. Journal of Indian Society for Probability and Statistics, 17 (2), 145-160. Google Scholar Citations: 3, ISSN(print/online): 2364-9569, URL/DOI: http://dx.doi.org/10.1007/s41096-016-0010-8
11)    Hanagal, D.D., Bhambure, S.M. (2016). Modeling Australian twin data using shared positive stable frailty models based on reversed hazard rate. Communications in Statistics-Theory and Methods, 46 (8), 3754-3771. Google Scholar Citations: 1, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2015.1071395
12)    Hanagal, D.D., Pandey, A. (2016). Inverse Gaussian shared frailty models based on reversed hazard rate. Model Assisted Statistics and Applications, 11 (2), 137-151. Google Scholar Citations: 3, ISSN(print/online): 1574-1699/1875-9068, URL/DOI: http://dx.doi.org/10.3233/MAS-150359
13)    Hanagal, D.D., Pandey, A. (2016). Gamma Shared Frailty Model Based on Reversed Hazard Rate. Communications in Statistics-Theory and Methods, 45 (7), 2071-2088. Google Scholar Citations: 2, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2013.870204
14)    Hanagal, D.D., Bhambure, S.M. (2016). Modeling bivariate survival data using shared inverse Gaussian frailty model. Communications in Statistics-Theory and Methods, 45 (17), 4969-4987. Google Scholar Citations: 4, WoS Citations: 2, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2014.901380
15)    Hanagal, D.D., Pandey, A. (2016). Shared Gamma Frailty Models Based on Additive Hazards. Journal of Indian Society for Probability and Statistics, 1 (1), 1-24. Google Scholar Citations: 2, ISSN(print/online): 2364-9569, URL/DOI: http://dx.doi.org/10.1007/s41096-016-0011-7
16)    Hanagal, D.D., Kamble, A.T. (2016). Bayesian estimation in shared compound negative binomial frailty models. Research and Reviews: Journal of Statistics and Mathematical Sciences, 2 (1), 53-67. ISSN(print/online): 2319-9873, URL/DOI: http://www.rroij.com/open-access/bayesian-estimation-in-shared-compound-negative-binomial-frailty-models-.php?aid=69699
17)    Hanagal, D.D., Pandey, A. (2015). Modelling bivariate survival data based on reversed hazard rate. International Journal of Mathematical Modelling and Numerical Optimisation, 6 (1), 72-100. ISSN(print/online): 2040-3607/2040-3615, URL/DOI: http://dx.doi.org/10.1504/IJMMNO.2015.068907
18)    Hanagal, D.D., Bhambure, S.M. (2015). Comparison of shared gamma frailty models using the Bayesian approach. Model Assisted Statistics and Applications, 10 (1), 25-41. Google Scholar Citations: 4, ISSN(print/online): 1574-1699/1875-9068, URL/DOI: http://dx.doi.org/10.3233/MAS-140308
19)    Hanagal, D.D., Pandey, A. (2015). Gamma frailty models for bivarivate survival data. Journal of Statistical Computation and Simulation, 85 (15), 3172-3189. Google Scholar Citations: 6, ISSN(print/online): 0094-9655/1563-5163, URL/DOI: http://dx.doi.org/10.1080/00949655.2014.958086
20)    Hanagal, D.D., Sharmaa, R. (2015). Bayesian inference in Marshall-Olkin bivariate exponential shared gamma frailty regression model under random censoring. Communications in Statistics-Theory and Methods, 44 (1), 24-47. Google Scholar Citations: 4, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2012.732182
21)    Hanagal, D.D., Kamble, A.T. (2015). Bayesian estimation in shared compound Poisson frailty models. Journal of Reliability and Statistical Studies, 8 (1), 159-180. ISSN(print/online): 0974-8024/2229-5666, URL/DOI: http://jrss.in.net/assets/8114.pdf
22)    Hanagal, D.D., Sharma, R. (2015). Comparison of Frailty Models for Acute Leukemia Data under Gompertz Baseline Distribution. Communications in Statistics-Theory and Methods, 44 (7), 1338-1350. Google Scholar Citations: 5, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2013.769600
23)    Hanagal, D.D., Sharma, R. (2015). Analysis of Bivariate Survival Data using Shared Inverse Gaussian Frailty Model. Communications in Statistics-Theory and Methods, 44 (7), 1351-1380. Google Scholar Citations: 5, WoS Citations: 2, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2013.768663
24)    Hanagal, D.D., Pandey, A., Sankaran, P.G. (2015). Shared frailty model based on reversed hazard rate for left censoring data. Communications in Statistics-Simulation and Computation, 46 (1), 230-243. Google Scholar Citations: 3, ISSN(print/online): 0361-0918/1532-4141, URL/DOI: http://dx.doi.org/10.1080/03610918.2014.960092
25)    Hanagal, D.D., Pandey, A. (2015). Shared Frailty Models Based on Reversed Hazard Rate for Modeling Australian Twin Data. Indian Association of Productivity Quality and Reliability Transactions, 40 (1), 61-93. ISSN(print/online): 0970-0102.
26)    Hanagal, D.D., Dabade, A.D. (2015). Comparison of Shared Frailty Models for Kidney Infection Data under Exponential Power Baseline Distribution. Communications in Statistics-Theory and Methods, 44 (23), 5091-5108. Google Scholar Citations: 4, WoS Citations: 1, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2013.813045
27)    Hanagal, D.D., Pandey, A., Ganguly, A. (2015). Correlated Gamma Frailty Models for Bivariate Survival Data. Communications in Statistics-Simulation and Computation, 46 (5), 3627-3644. Google Scholar Citations: 4, ISSN(print/online): 0361-0918/1532-4141, URL/DOI: http://dx.doi.org/10.1080/03610918.2015.1085559
28)    Hanagal, D.D., Pandey, A. (2015). Inverse Gaussian Shared Frailty Models with Generalized Exponential and Generalized Inverted Exponential as Baseline Distributions. Journal of Data Science, 13 (3), 569-602. Google Scholar Citations: 2, ISSN(print/online): 1680-743X/1683-8602.
29)    Wagh, D., Kulkarni, M., Hanagal, D., Mhase, N. (2015). Effect of Soil pH on Meloidogyne Species in Piper betel by Path Analysis Study. Indian Journal of Nematology, 45 (1), 71-80. ISSN(print/online): 0303-6960/0974-4444, URL/DOI: http://www.indianjournals.com/ijor.aspx?target=ijor:ijn&volume=45&issue=1&article=012&type=pdf
30)    Hangal, D.D., Pandey, A. (2014). Gamma shared frailty model based on reversed hazard rate for bivariate survival data. Statistics and Probability Letters, 88 (1), 190-196. Google Scholar Citations: 5, WoS Citations: 2, ISSN(print/online): 0167-7152/1879-7152, URL/DOI: http://dx.doi.org/10.1016/j.spl.2014.02.008
31)    Hanagal, D.D., Kamble, A.T. (2014). Bayesian estimation in shared inverse Gaussian frailty models. International Journal of Statistics, 1 (1), 9-20. URL/DOI: http://escitechpublishing.com/j_f_ijs/Articles/2014V1P9.pdf
32)    Hanagal, D.D., Bhambure, S.M. (2014). Analysis of kidney infection data using shared positive stable frailty models. Advances in Reliability, 1 (1), 21-39. URL/DOI: http://escitechpublishing.com/j_f_air/Articles/2014V1P21.pdf
33)    Hanagal, D.D., Pandey, A. (2014). Inverse Gaussian Shared Frailty for Modeling Kidney Infection Data. Advances in Reliability, 1 (1), 1-14. Google Scholar Citations: 5, URL/DOI: http://escitechpublishing.com/j_f_air/Articles/2014V1P1.pdf
34)    Hanagal, D.D., Dabade, A.D. (2014). Comparisons of frailty models for kidney infection data under Weibull baseline distribution. International Journal of Mathematical Modelling and Numerical Optimisation, 5 (4), 342-373. ISSN(print/online): 2040-3607/2040-3615, URL/DOI: http://dx.doi.org/10.1504/IJMMNO.2014.065406
35)    Angali, K.A., Latifi, S.M., Hanagal, D.D. (2014). Bayesian estimation of bivariate exponential distributions based on linex and quadratic loss functions: a survival approach with censored samples. Communications in Statistics-Simulation and Computation, 43 (1), 31-44. Google Scholar Citations: 4, WoS Citations: 2, ISSN(print/online): 0361-0918/1532-4141, URL/DOI: http://dx.doi.org/10.1080/03610918.2012.697963
36)    Hangal, D.D., Sharma, R. (2013). Analysis of diabetic retinopathy data using shared inverse Gaussian frailty model. Model Assisted Statistics and Applications, 8 (2), 103-119. Google Scholar Citations: 5, ISSN(print/online): 1574-1699/1875-9068, URL/DOI: http://dx.doi.org/10.3233/MAS-130260
37)    Hanagal, D.D., Dabhade, A.D. (2013). Compound negative binomial shared frailty models for bivariate survival data. Statistics and Probability Letters, 83 (11), 2507-2515. ISSN(print/online): 0167-7152/1879-7152, URL/DOI: http://dx.doi.org/10.1016/j.spl.2013.07.005
38)    Hanagal, D.D., Dabade, A.D. (2013). Bayesian Estimation of Parameters and Comparison of Shared Gamma Frailty Models. Communications in Statistics-Simulation and Computation, 42 (4), 910-931. Google Scholar Citations: 12, WoS Citations: 6, ISSN(print/online): 0361-0918/1532-4141, URL/DOI: http://dx.doi.org/10.1080/03610918.2012.661909
39)    Hanagal, D.D., Sharma, R. (2013). Analysis of tumorigenesis data using shared inverse Gaussian frailty models via Bayesian approach. Journal of Indian Society for Probability and Statistics, 14, 76-102. ISSN(print/online): 2364-9569.
40)    Hanagal, D.D., Sharma, R. (2013). Modeling Heterogeneity for Bivariate Survival Data by Shared Gamma Frailty Regression Model. Model Assisted Statistics and Applications, 8 (2), 85-102. Google Scholar Citations: 6, ISSN(print/online): 1574-1699/1875-9068, URL/DOI: http://dx.doi.org/10.3233/MAS-130259
41)    Hanagal, D.D., Dabade, A.D. (2013). Modeling of inverse Gaussian frailty model for bivariate survival data. Communications in Statistics-Theory and Methods, 42 (20), 3744-3769. Google Scholar Citations: 5, WoS Citations: 3, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610926.2011.638428
42)    Parkar, S.F., Sachdev, D., Kamble, A., Suresh, G., Munot, H., Hanagal, D., Shouche, Y., Kapadnis, B. (2013). Prevalence, seasonality and antibiotic susceptibility of thermophilic Campylobacters in ceca and carcasses of poultry birds in the live-bird market. African Journal of Microbiology Research, 7 (21), 2442-2453. Google Scholar Citations: 11, ISSN(print/online): 1996-0808, URL/DOI: http://dx.doi.org/10.5897/AJMR2012.2323
43)    Hanagal, D.D., Sharma, R. (2012). A bivariate Gompertz regression model with shared gamma frailty for censored data. Model Assisted Statistics and Applications, 7 (3), 161-168. Google Scholar Citations: 1, ISSN(print/online): 1574-1699/1875-9068, URL/DOI: http://dx.doi.org/10.3233/MAS-2011-0220
44)    Hanagal, D.D., Sharma, R. (2012). Bayesian estimation of parameters for the bivariate Gompertz regression model with shared gamma frailty under random censoring. Statistics and Probability Letters, 82 (7), 1310-1317. Google Scholar Citations: 4, WoS Citations: 1, ISSN(print/online): 0167-7152/1879-7152, URL/DOI: http://dx.doi.org/10.1016/j.spl.2012.03.028
45)    Hanagal, D.D., Sharma, R. (2012). Analysis of tumorigenesis data using shared gamma frailty models via Bayesian approach. International Journal of Statistics and Management Systems, 7, 105-135. ISSN(print/online): 0973-7359, URL/DOI: https://pdfs.semanticscholar.org/104e/70656dac363f7c2129df0218a14fd71b3106.pdf
46)    Hanagal, D.D., Dabade, A.D. (2012). Modeling Heterogeneity in Bivariate Survival Data by Compound Poisson Distribution using Bayesian Approach. International Journal of Statistics and Management Systems, 7 (1-2), 36-84. Google Scholar Citations: 1, ISSN(print/online): 0973-7359, URL/DOI: https://pdfs.semanticscholar.org/2a2f/72e2dbe40dc4d29fb49622931f07133bd6c1.pdf
47)    Hanagal, D.D., Kanade, R.A. (2012). Optimal replacement policy based on number of down times of the first component. Journal of Indian Society for Probability and Statistics, 13, 54-64. ISSN(print/online): 2364-9569.
48)    Hangal, D.D., Kanade, R.A. (2011). Optimal geometric process replacement policies based on number of down times. International Journal of Reliability, Quality and Safety Engineering, 18 (6), 495-513. ISSN(print/online): 0218-5393/1793-6446, URL/DOI: http://dx.doi.org/10.1142/S0218539311004214
49)    Hanagal, D.D., Kanade, R.A. (2011). Optimal replacement policies based on number of down times for cold standby system when the lifetime and the repair time are dependent. Journal of Reliability and Statistical Studies, 4 (1), 42-52. Google Scholar Citations: 6, ISSN(print/online): 0974-8024/2229-5666, URL/DOI: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.301.4856&rep=rep1&type=pdf
50)    Hanagal, D.D., Samajdwar, J.C. (2011). Quality loss index with one sided specification limit. International Journal of Reliability and Quality Performance, 3 (2), 175-190. ISSN(print/online): 0975-2102.
51)    Hanagal, D.D., Samajdwar, J.C. (2011). Quality loss index for non-symmetric distributions. International Journal of Reliability and Quality Performance, 3 (2), 159-173. ISSN(print/online): 0975-2102.
52)    Hanagal, D.D., Samajdwar, J. (2011). Quality loss index QLI and its properties. Economic Quality Control, 26 (1), 63-72. Google Scholar Citations: 1, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/eqc.2011.006
53)    Hanagal, D.D., Ahmedi, K.A. (2011). Bivariate linear failure rate distribution. International Journal of Statistics and Management Systems, 6 (1-2), 73-84. ISSN(print/online): 0973-7359.
  

Publications Before 2011


54)    Hangal, D.D. (2010). Modeling heterogeneity for bivariate survival data by the compound poisson distribution. Model Assisted Statistics and Applications, 5 (1), 1-9. Google Scholar Citations: 7, WoS Citations: 1, ISSN(print/online): 1574-1699/1875-9068, URL/DOI: http://dx.doi.org/10.3233/MAS-2010-0117
55)    Hangal, D.D. (2010). Modeling heterogeneity for bivariate survival data by the compound Poisson distribution with random scale. Statistics and Probability Letters, 80 (23), 1781-1790. Google Scholar Citations: 10, WoS Citations: 3, ISSN(print/online): 0167-7152/1879-7152, URL/DOI: http://dx.doi.org/10.1016/j.spl.2010.08.002
56)    Hangal, D.D., Kanade, R.A. (2010). Optimal Replacement Policy Based on the Number of Down Times. Economic Quality Control, 25 (1), 3-12. Google Scholar Citations: 3, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/eqc.2010.001
57)    Rattihalli, S.R., Hanagal, D.D. (2010). A Replacement Policy Based on Down Time for a Cold Standby System with Dependent Lifetime and Repairtime. Economic Quality Control, 24 (2), 207-212. Google Scholar Citations: 2, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/EQC.2009.207
58)    Hangal, D.D., Kanade, R.A. (2010). Optimal Replacement Policy Based on the Number of Down Times with Priority in Use. Economic Quality Control, 25 (2), 243-251. Google Scholar Citations: 2, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/eqc.2010.017
59)    Hangal, D.D. (2010). Modeling heterogeneity for bivariate survival data by the Weibull distribution. Statistical Papers, 51 (4), 947-958. Google Scholar Citations: 4, WoS Citations: 3, ISSN(print/online): 0932-5026/1613-9798, URL/DOI: http://dx.doi.org/10.1007/s00362-008-0188-2
60)    Hanagal, D.D., Mandrekar, V. (2010). Generalized Loss of Memory Property and a Multivariate Extension. Economic Quality Control, 24 (1), 43-54. ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/EQC.2009.43
61)    Hanagal, D.D. (2010). Correlated compound Poisson frailty model for the bivariate survival data. International Journal of Statistics and Management Systems, 5, 127-140. Google Scholar Citations: 4, ISSN(print/online): 0973-7359.
62)    Hangal, D.D. (2009). Weibull extension of bivariate exponential regression model with different frailty distributions. Statistical Papers, 50 (1), 29-49. Google Scholar Citations: 12, WoS Citations: 6, ISSN(print/online): 0932-5026/1613-9798, URL/DOI: http://dx.doi.org/10.1007/s00362-007-0057-4
63)    Hangal, D.D. (2009). Modeling heterogeneity for bivariate survival data by power variance function distribution. Journal of Reliability and Statistical Studies, 2 (1), 14-27. Google Scholar Citations: 5, ISSN(print/online): 0974-8024/2229-5666, URL/DOI: https://pdfs.semanticscholar.org/f8d6/e58a5b5a045f15dd86a6cfb7bd286e20c063.pdf
64)    Hangal, D.D. (2009). Inference in the multivariate exponential models. Journal of Reliability and Statistical Studies, 2 (2), 1-10. ISSN(print/online): 0974-8024/2229-5666, URL/DOI: https://pdfs.semanticscholar.org/1f24/3949b4915b2a136d6824bf2269bb8cb6a839.pdf
66)    Hanagal, D.D., Ahmadi, K.A. (2009). Bayesian estimation of parameters in bivariate exponential regression models. Journal of Statistical Theory and Application, 8 (4), 428-447. ISSN(print/online): 1538-7887.
67)    Hanagal, D.D., Ahmadi, K.A. (2009). Bayesian Estimation of the Parameters of Bivariate Exponential Distributions. Communications in Statistics-Simulation and Computation, 38 (7), 1391-1413. Google Scholar Citations: 7, WoS Citations: 4, ISSN(print/online): 0361-0918/1532-4141, URL/DOI: http://dx.doi.org/10.1080/03610910902940143
68)    Hanagal, D.D. (2008). Modelling heterogeneity for bivariate survival data by the lognormal distribution. Statistics and Probability Letters, 78 (9), 1101-1109. Google Scholar Citations: 7, WoS Citations: 4, ISSN(print/online): 0167-7152/1879-7152, URL/DOI: http://dx.doi.org/10.1016/j.spl.2007.11.004
69)    Ahmadi, K.A., Hanagal, D.D. (2008). Bayesian hypothesis tests for some bivariate exponential distributions. Model Assisted Statistics and Applications, 3 (3), 269-278. ISSN(print/online): 1574-1699/1875-9068.
70)    Hangal, D.D. (2008). Frailty regression models in mixture distributions. Journal of Statistical Planning and Inference, 138 (8), 2462-2468. Google Scholar Citations: 8, WoS Citations: 3, ISSN(print/online): 0378-3758/1873-1171, URL/DOI: http://dx.doi.org/10.1016/j.jspi.2007.10.014
71)    Hanagal, D.D., Ahmadi, K.A. (2008). Parameter Estimation for the Bivariate Exponential Distribution by the EM Algorithm Based on Censored Samples. Economic Quality Control, 23 (2), 257-266. Google Scholar Citations: 5, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/EQC.2008.257
72)    Hanagal, D.D., Ahmadi, K.A. (2008). Bayesian estimation of parameters in some bivariate exponential models. Advances and Applications in Statistics, 10 (2), 179-193. ISSN(print/online): 0972-3617.
73)    Hanagal, D.D. (2007). Gamma frailty regression models in mixture distributions. Economic Quality Control, 22 (2), 295-302. Google Scholar Citations: 14, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/EQC.2007.295
74)    Hanagal, D.D. (2007). A power variance function frailty regression model in bivariate survival data. Indian Association of Productivity Quality and Reliability Transactions, 32 (2), 117-129. Google Scholar Citations: 2, ISSN(print/online): 0970-0102.
75)    Hanagal, D.D. (2006). Bivariate Weibull regression model based on censored samples. Statistical Papers, 47 (1), 137-148. Google Scholar Citations: 26, WoS Citations: 11, ISSN(print/online): 0932-5026/1613-9798, URL/DOI: http://dx.doi.org/10.1007/s00362-005-0277-4
76)    Hanagal, D.D. (2006). Weibull extension of bivariate exponential regression model with gamma frailty for survival data. Economic Quality Control, 21 (2), 261-270. Google Scholar Citations: 10, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/EQC.2006.261
78)    Hanagal, D.D. (2006). A gamma frailty regression model in bivariate survival data. Indian Association of Productivity Quality and Reliability Transactions, 31, 73-83. Google Scholar Citations: 16, ISSN(print/online): 0970-0102.
79)    Hanagal, D.D. (2005). A bivariate Weibull regression model. Economic Quality Control, 20 (1), 143-150. ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/EQC.2005.143
80)    Hanagal, D.D. (2005). A positive stable frailty regression model in bivariate survival data. Journal of Indian Society for Probability and Statistics, 9, 35-44. Google Scholar Citations: 14, ISSN(print/online): 2364-9569, URL/DOI: http://www.researchgate.net/profile/David_Hanagal2/publication/228525671_A_positive_stable_frailty_regression_model_in_bivariate_survival_data/links/54aaa4480cf25c4c472f4285.pdf
81)    Hanagal, D.D. (2005). Weibull Extension of a Bivariate Exponential Regression Model. Economic Quality Control, 20 (2), 247-253. Google Scholar Citations: 1, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/EQC.2005.247
82)    Hangal, D.D. (2004). Parametric bivariate regression analysis based on censored samples: A Weibull model. Economic Quality Control, 19 (1), 83-90. Google Scholar Citations: 14, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://dx.doi.org/10.1515/EQC.2004.83
83)    Hanagal, D.D. (2003). Estimation of system reliability in multi-component series stress-strength models. Journal of the Indian Statistical Association, 41 (1), 1-14. Google Scholar Citations: 2, ISSN(print/online): 0537-2585, URL/DOI: https://pdfs.semanticscholar.org/3f68/fef0defb5f1ecaaf41745b18e214c3d2affd.pdf
84)    Hanagal, D.D. (1999). Estimation of reliability of a component subjected to bivariate exponential stress. Statistical Papers, 40 (2), 211-220. Google Scholar Citations: 8, WoS Citations: 6, ISSN(print/online): 0932-5026/1613-9798, URL/DOI: http://dx.doi.org/10.1007/BF02925519
85)    Hanagal, D.D. (1999). Estimation of system reliability. Statistical Papers, 40 (1), 99-106. Google Scholar Citations: 16, WoS Citations: 10, ISSN(print/online): 0932-5026/1613-9798, URL/DOI: http://dx.doi.org/10.1007/BF02927113
86)    Hangal, D.D. (1998). Testing whether the survival function is multivariate new better than used. Statistical Papers, 39 (2), 203-211. Google Scholar Citations: 2, ISSN(print/online): 0932-5026/1613-9798, URL/DOI: http://dx.doi.org/10.1007/BF02925407
88)    Hanagal, D.D. (1998). Estimation of system reliability in stress-strength models for distributions useful in life testing. Indian Association of Productivity Quality and Reliability Transactions, 23 (1), 61-65. Google Scholar Citations: 4, ISSN(print/online): 0970-0102, URL/DOI: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=2C451852D687F4E0A4CD289FDC7C626E?doi=10.1.1.538.9032&rep=rep1&type=pdf
89)    Hanagal, D.D., Ramanathan, T.V. (1998). Tests for bivariate exponentiality against BIFRA alternatives based on censored samples. Communications in Statistics-Theory and Methods, 27 (8), 1947-1960. Google Scholar Citations: 1, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610929808832202
90)    Hangal, D.D. (1997). Note on estimation of reliability under bivariate pareto stress-strength model. Statistical Papers, 38 (4), 453-459. Google Scholar Citations: 21, WoS Citations: 11, ISSN(print/online): 0932-5026/1613-9798, URL/DOI: http://dx.doi.org/10.1007/BF02926000
91)    Hangal, D.D. (1997). Inference procedures in some bivariate exponential models under hybrid random censoring. Statistical Papers, 38 (2), 167-189. Google Scholar Citations: 4, ISSN(print/online): 0932-5026/1613-9798, URL/DOI: http://dx.doi.org/10.1007/BF02925222
92)    Hangal, D.D. (1997). Estimation of reliability when stress is censored at strength. Communications in Statistics-Theory and Methods, 26 (4), 911-919. Google Scholar Citations: 9, WoS Citations: 3, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610929708831958
93)    Hangal, D.D. (1997). Tests for bivariate exponentiality against BHNBUE alternatives. Communications in Statistics-Theory and Methods, 26 (5), 1239-1252. Google Scholar Citations: 1, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610929708831979
94)    Hanagal, D.D. (1997). On the estimation of reliability of a component subjected to two stresses. International Journal of Management and Systems, 13 (1), 49-58. ISSN(print/online): 0970-7328.
95)    Hanagal, D.D. (1997). Correction on A multivariate Weibull distribution. Economic Quality Control, 12, 59. ISSN(print/online): 0940-5151/1869-6147.
96)    Hanagal, D.D. (1996). A multivariate pareto distribution. Communications in Statistics-Theory and Methods, 25 (7), 1471-1488. Google Scholar Citations: 32, WoS Citations: 7, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610929608831779
97)    Hangal, D.D. (1996). Umpu Tests for Testing Symmetry and Stress-Passing in Some Bivariate Exponential Models. Statistics, 28 (3), 227-239. Google Scholar Citations: 14, ISSN(print/online): 0233-1888/1029-4910, URL/DOI: http://dx.doi.org/10.1080/02331889708802562
98)    Hangal, D.D. (1996). Selection of a better component in bivariate exponential models. Journal of the Italian Statistical Society, 5 (2), 229-238. Google Scholar Citations: 1, ISSN(print/online): 1121-9130/1613-981X, URL/DOI: http://dx.doi.org/10.1007/BF02589174
99)    Hangal, D.D. (1996). Estimation of system reliability from stress-strength relationship. Communications in Statistics-Theory and Methods, 25 (8), 1783-1797. Google Scholar Citations: 24, WoS Citations: 4, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: https://doi.org/10.1080/1532415X.1996.11877454
100)    Hanagal, D.D. (1996). A multivariate Weibull distribution. Economic Quality Control, 11, 193-200. Google Scholar Citations: 27, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.533.5120&rep=rep1&type=pdf
101)    Hanagal, D.D. (1996). Estimation of system reliability in two-component stress-strength models. Economic Quality Control, 11, 145-154. Google Scholar Citations: 7, ISSN(print/online): 0940-5151/1869-6147, URL/DOI: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.562.8200&rep=rep1&type=pdf
103)    Hanagal, D.D. (1995). Estimation of reliability in absolutely continuous bivariate exponential stress-strength models. Economic Quality Control, 10, 217-222. ISSN(print/online): 0940-5151/1869-6147.
104)    Hanagal, D.D. (1995). Testing reliability in a bivariate exponential stress-strength model. Journal of the Indian Statistical Association, 33, 41-45. Google Scholar Citations: 14, ISSN(print/online): 0537-2585.
105)    Hangal, D.D. (1993). Some inference results in an absolutely continuous multivariate exponential model of Block. Statistics and Probability Letters, 16 (3), 177-180. Google Scholar Citations: 9, WoS Citations: 2, ISSN(print/online): 0167-7152/1879-7152, URL/DOI: http://dx.doi.org/10.1016/0167-7152(93)90140-E
106)    Hangal, D.D. (1993). Some inference results in several symmetric multivariate exponential models. Communications in Statistics-Theory and Methods, 22 (9), 276-288. Google Scholar Citations: 5, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610928308831168
107)    Hangal, D.D. (1992). Some inference results in bivariate exponential distributions rased on censored samples. Communications in Statistics-Theory and Methods, 21 (5), 1273-1295. Google Scholar Citations: 35, WoS Citations: 16, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610929208830846
108)    Hangal, D.D., Kale, B.K. (1992). Large sample tests for testing symmetry and independence in some bivariate exponential models. Communications in Statistics-Theory and Methods, 21 (9), 2625-2643. Google Scholar Citations: 28, WoS Citations: 13, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610929208830934
109)    Hanagal, D.D. (1992). Some Inference Results in Modified Freund's Bivariate Exponential Distribution. Biometrical Journal, 34 (6), 745–756. Google Scholar Citations: 44, WoS Citations: 20, ISSN(print/online): 0323-3847/1521-4036, URL/DOI: http://dx.doi.org/10.1002/bimj.4710340615
110)    Hanagal, D.D., Kale, B.K. (1991). Large sample tests of λ3 in the bivariate exponential distribution. Statistics and Probability Letters, 12 (4), 311-313. Google Scholar Citations: 25, WoS Citations: 13, ISSN(print/online): 0167-7152/1879-7152, URL/DOI: http://dx.doi.org/10.1016/0167-7152(91)90097-B
111)    Hanagal, D.D., Kale, B.K. (1991). Large sample tests of independence for absolutely continuous bivariate exponential distribution. Communications in Statistics-Theory and Methods, 20 (4), 1301-1313. Google Scholar Citations: 23, WoS Citations: 14, ISSN(print/online): 0361-0926/1532-415X, URL/DOI: http://dx.doi.org/10.1080/03610929108830566
112)    Hanagal, D.D. (1991). Large sample tests of independence and symmetry in the multivariate exponential distribution. Journal of the Indian Statistical Association, 29 (2), 89-93. Google Scholar Citations: 4, ISSN(print/online): 0537-2585.